LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - APRIL 2023
UPH 3502 - MATHEMATICAL PHYSICS - II

Date: 04-05-2023
Dept. No.
Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

SECTION A

Q. No. Answer ALL questions

1 MCQ
(a) Which of the following equation is Laplace's equation?
(a) $\nabla^{2} u=0$
(b) $\nabla^{2} u=\frac{-\rho}{\varepsilon_{0}}$
(c) $\nabla^{2} u=1$
(d) $\nabla^{2} u=-1$
(b) In heat flow equation is $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{h^{2}} \frac{\partial u}{\partial t}$, the quantity ' h ' is called
(a) Planck's constant
(b) Conductivity
(c) heat flow constant
(d) diffusivity
(c) get the solution if the constant (P) is

When solving a 1-Dimensional wave equation using variable separable method, we
(a) positive
(b) negative
(c) zero
(d) one
(d)

Fourier transform of $F\left[a f_{1}(x)+b f_{2}(x)\right]$
(a) $a F_{1}(x)+b F_{2}(x)$
(b) $\quad a f_{1}(x)+b f_{2}(x)$
(c) $\quad a F_{1}(s)+b F_{2}(s)$
(d) $a F(x)+b F(x)$

Which of the following is a method of finding roots of an algebraic equation?
(e)
(a) Newton-Rapshon
(b) Lagrange's method
(c) Trapezoidal rule
(d) Simpson $1 / 3^{\text {rd }}$ rule.

2 Fill in the blanks

(a)	Laplace equation in cylindrical coordinate system is	K1	CO1
(b)	If the roots α and β of second order differential equation are real and distinct, then the general solution is \qquad	K1	CO1
(c)	Fourier sine transform of $\frac{1}{x}$ is.................	K1	CO1
(d)	The Fourier cosine transform of $\mathrm{f}(\mathrm{x})$ is...........	K1	CO1
(e)	Trapezoidal rule is used to evaluate integrals.	K1	CO1
3	Match the following	($5 \times 1=5$)	
(a)	Partial derivative First order differential equation.	K2	CO1
(b)	$F_{s}\left[e^{-a x}\right] \quad$ Numerical Integration.	K2	CO1
(c)	Simpson's $1 / 3^{\text {rd }}$ rule $\quad \sqrt{\frac{2}{\pi}} \frac{s}{a^{2}+b^{2}}$.	K2	CO1
(d)	Euler's method $\quad \sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+b^{2}}$.	K2	CO1
(e)	$F_{c}\left[e^{-a x}\right] \quad$ Wave equation.	K2	CO1
4	State True or False	($5 \times 1=5$)	
(a)	A partial differential equation is a differential equation in which the dependent variable depends on two or more independent variable.	K2	CO1
(b)	Fourier sine and cosine transforms are used to solve first and second order	K2	CO1

15 (i) Find the Fourier transform of the function
$f(x)=\left\{\begin{array}{cc}1+\frac{x}{a}, & -a<x<0 \\ 1-\frac{x}{a}, & 0<x<a \\ 0 & \text { Otherwise }\end{array}\right.$
(ii) State and prove convolution theorem in Fourier Transform.

16 Prepare the forward difference/ backward difference table and estimate the population in the year 1946 of the given data by using Newton's forward and backward interpolation formulas. Also compare the final results.

Year	1911	1921	1931	1941	1951	1961
Population in thousands	12	15	20	27	39	52

