LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – PHYSICS THIRD SEMESTER – APRIL 2023

UPH 3502 - MATHEMATICAL PHYSICS - II

Max. : 100 Marks

Date: 04-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM

	SECTION A					
Q. No.	Answer ALL questions					
1	MCQ	(5 x	1 = 5)			
(a)	Which of the following equation is Laplace's equation? (a) $\nabla^2 u = 0$ (b) $\nabla^2 u = \frac{-\rho}{\varepsilon_0}$ (c) $\nabla^2 u = 1$ (d) $\nabla^2 u = -1$	K1	CO1			
(b)	(a) $\nabla^2 u = 0$ (b) $\nabla^2 u = \frac{-\rho}{\varepsilon_0}$ (c) $\nabla^2 u = 1$ (d) $\nabla^2 u = -1$ In heat flow equation is $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h^2} \frac{\partial u}{\partial t}$, the quantity 'h' is called (a) Planck's constant (b) Conductivity (c) heat flow constant (d) diffusivity	K1	CO1			
(c)	When solving a 1-Dimensional wave equation using variable separable method, we get the solution if the constant (P) is(a) positive(b) negative(c) zero(d) one	K1	CO1			
(d)	Fourier transform of $F[af_1(x) + bf_2(x)]$ (a) $aF_1(x) + bF_2(x)$ (b) $af_1(x) + bf_2(x)$ (c) $aF_1(s) + bF_2(s)$ (d) $aF(x) + bF(x)$	K1	CO1			
(e)	Which of the following is a method of finding roots of an algebraic equation?(a) Newton-Rapshon(b) Lagrange's method(c) Trapezoidal rule(d) Simpson 1/3 rd rule.	K1	CO1			
2	Fill in the blanks					
(a)	Laplace equation in cylindrical coordinate system is	K1	CO1			
(b)	If the roots α and β of second order differential equation are real and distinct, then the general solution is	K1	CO1			
(c)	Fourier sine transform of $\frac{1}{x}$ is	K1	CO1			
(d)	The Fourier cosine transform of f(x) is	K1	CO1			
(e)	Trapezoidal rule is used to evaluate integrals.	K1	CO1			
3	Match the following	(5 x	1 = 5)			
(a)	Partial derivative First order differential equation.	K2	CO1			
(b)	$F_s[e^{-ax}]$ Numerical Integration.	K2	CO1			
(c)	Simpson's 1/3 rd rule $\sqrt{\frac{2}{\pi}} \frac{s}{a^2 + b^2}$.	K2	CO1			
(d)	Euler's method $\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + b^2}$.	K2	CO1			
(e)	$F_c[e^{-ax}]$ Wave equation.	K2	CO1			
4	State True or False	(5 x 1	1 = 5)			
(a)	A partial differential equation is a differential equation in which the dependent variable depends on two or more independent variable.	K2	CO1			
(b)	Fourier sine and cosine transforms are used to solve first and second order	K2	CO1			

(c)	differential equations.		
1 (-)	Lagrange's interpolation formula used is only equal intervals.	K2	CO1
(d)	Numerical integration is the technique of computing the value of an indefinite	K2	CO1
	integral.Interpolation is a technique of computing the value of the function within the range	K2	CO1
(e)	of values, of the given parameter.	K2	COI
<u> </u>	SECTION B		
Answe	er any TWO of the following	(2 x 1) = 20)
5.	Solve the wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ using D'Alembert's principle.	K3	CO2
6.	Show that (i). $F_s[xf(x)] = -\frac{d}{ds}F_c(s)$ (ii) $F_c[xf(x)] = \frac{d}{ds}F_s(s)$. Hence find	K3	CO2
	Fourier cosine and sine transform of xe^{-ax} .		~ ~ ~
7.	Apply least square method to fit a straight line to the data given below. Also estimate the value of y at $x = 2.5$.	K3	CO2
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	y 1 1.8 3.3 4.5 6.3		
8.	Calculate $\int_{-3}^{3} x^4 dx$ by using Trapezoidal rule and Simpson's one third rule. Verify	К3	CO2
	your answer with actual integration. SECTION C		
Answe		(2 x 1)	0 = 20)
9.	A string is stretched and fastened to two points 1 apart. Motion is started by	K4	CO3
	displacing the string in the form $y = k (lx - x^2)$ from which it is released at time $t = 0$. Find the displacement of any point on the string at a distance of 'x' from one end at time 't'.	111	
10.	Analyse the one dimensional heat equation and solve it to get its general solution.	K4	CO3
10. 11	Analyse the one dimensional heat equation and solve it to get its general solution.Apply Lagrange's formula to calculate f (2.4) from the following table x 012	K4 K4	CO3 CO3
11	Analyse the one dimensional heat equation and solve it to get its general solution.Apply Lagrange's formula to calculate f (2.4) from the following table	K4	CO3
	Analyse the one dimensional heat equation and solve it to get its general solution.Apply Lagrange's formula to calculate f (2.4) from the following table x 012 $f(x)$ 12110Identify the root of the function $f(x) = x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to three decimal places using Newton-Raphson method.		
11	Analyse the one dimensional heat equation and solve it to get its general solution.Apply Lagrange's formula to calculate f (2.4) from the following table x 012f(x)121Identify the root of the function $f(x) = x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to three decimal	K4	CO3
11	Analyse the one dimensional heat equation and solve it to get its general solution.Apply Lagrange's formula to calculate f (2.4) from the following table x 0 1 2 3 $f(x)$ 1 2 1 10 Identify the root of the function $f(x) = x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to three decimal places using Newton-Raphson method.SECTION D	K4	CO3 CO3
11	Analyse the one dimensional heat equation and solve it to get its general solution. Apply Lagrange's formula to calculate f (2.4) from the following table x 0 1 2 3 $f(x)$ 1 2 1 10 Identify the root of the function $f(x) = x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to three decimal places using Newton-Raphson method. SECTION D (1 (1)	K4 K4	CO3
11 12 Answe	Analyse the one dimensional heat equation and solve it to get its general solution.Apply Lagrange's formula to calculate f (2.4) from the following table x 0 1 2 3 $f(x)$ 1 2 3 $f(x)$ 1 2 3 $f(x)$ 1 2 3 $f(x)$ 1 2 1 10 Identify the root of the function $f(x) = x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to three decimal places using Newton-Raphson method.SECTION D(1)(1)Section 0 (1)(1)Section 0 (1)(1)Section 0 (1)Section 0 (1)(1)Section 0 (1)Section 0 (1)(1)Section 0 (1)Solve $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$ by the method of separation of variables.	K4 K4 x 20 =	CO3 CO3
11 12 Answe	Analyse the one dimensional heat equation and solve it to get its general solution.Apply Lagrange's formula to calculate f (2.4) from the following table x 0 1 2 3 $f(x)$ 1 2 3 $f(x)$ 1 2 3 $f(x)$ 1 2 3 $f(x)$ 1 2 3 $f(x)$ 1 2 1 10 Identify the root of the function $f(x) = x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to three decimal places using Newton-Raphson method.SECTION D(1)(1)SECTION D(1)(1)SECTION D(1)		

	er any ONE of the f							(1 x 20	
15	(i) Find the Fourie	er transform	of the fun	ction				K6	CO
	$f(x) = \begin{cases} 1 + \frac{x}{a}, & -a < x < 0\\ 1 - \frac{x}{a}, & 0 < x < a\\ 0 & Otherwise \end{cases} $ (12)								
	$\int f(x) = \begin{cases} 1 - \frac{x}{a}, \end{cases}$	0 < <i>x</i> <	а				(12)		
		Otherwise	<u>ę</u>						
	(ii) State and prov	e convolutio	on theorem	in Fourier	Transform		(8)		
16	Prepare the forward difference/ backward difference table and estimate the							K6	CC
	population in the year 1946 of the given data by using Newton's forward and							1	
	backward interpolation formulas. Also compare the final results.								
	Year	1911	1921	1931	1941	1951	1961		
	Population in								
	thousands	12	15	20	27	39	52		
				\$\$\$\$\$\$\$					